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We study a stochastic reaction-diffusion lattice model for describing the calcium dynamics in the endoplas-
mic reticulum �ER� membrane. Calcium channels and calcium ions are placed in two interpenetrating square
lattices which are connected by calcium release and diffusion. Calcium ions are released from the ER through
the channels and they can both remain in the membrane or spontaneously leave the membrane into the cytosol.
The state of the channel is modulated by calcium ions: a channel can be open, closed, or inactive. The model
is studied by numerical simulations and mean field theory and exhibits a phase transition from an active state
to an absorbing state which is the result of the catalytic calcium release. The critical behavior of the model is
in the directed percolation universality class.
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I. INTRODUCTION

Calcium ions �Ca2+� play an important physiological role
as second messenger for several cellular functions, ranging
from muscle contraction to the activation of egg cells by
fertilization �1–3�. In order to control this variety of func-
tions Ca2+ needs to be precisely regulated in space and time.
In fact, the nonlinear propagation of cytosolic free calcium
are often used for signaling in cells, transmitting information
over distances much longer than the diffusion process, and in
more versatile ways �4�.

The increase of intracellular calcium concentration occurs
by the release from internal sources. Particularly, in cells that
are not electrically excitable, calcium is stored in the endo-
plasmic reticulum �ER� and can be released through the cal-
cium channels �2,3�. A calcium channel has a receptor with
several binding sites. Experimental findings suggest that the
opening of the channel occurs when the inositol 1,4,5-
triphosphate �IP3� and only one Ca2+ are bound to the recep-
tor �5�. Calcium release is terminated by closure of calcium
channels, when a calcium ion is bound to the other binding
site. For this reason, the two binding sites for calcium are
called activating and inhibiting sites. Therefore, low calcium
levels in the cytosol favor channel opening while high levels
close the channel, rendering a highly nonlinear behavior �3�.
This autocatalytic amplification is called calcium-induced
calcium release and it is present in a variety of channels
�3,6�. Exceeding Ca2+ is removed from the cytosol to the ER
by the action of the pumps �7�. An important aspect of the
closing and the opening of the channel is its stochastic nature
due to the random binding and unbinding of calcium ions
into the activating and inhibiting sites �8�. Indeed, experi-
mental observations of the release of a single channel or of a
cluster of channels showed that a high degree of stochasticity
is present �9�.

There is much literature devoted to modeling calcium dy-
namics. The kinetic models present a different number of
states for the channel receptor, depending on the rules for IP3
and Ca2+ binding and on the number of subunits of a calcium
channel. The kinetic deterministic models �3,10–13� consider

a large population of channels and use partial differential
equations in order to describe the calcium concentration and
the channel states. Stochastic versions of the kinetic models
have also been proposed �7,8,14–17�. In fact, in order to
reproduce some important experimental aspects of calcium
release �such as the statistics of puffs� it is mandatory to take
into account the binding processes of Ca2+ and IP3 as sto-
chastic events �1,7,16�.

Reaction-diffusion equations coupled to simplified models
for calcium release have also been used in the analysis of
calcium dynamics �18–22�. Other simplified stochastic mod-
els for calcium dynamics consider local coupling between
the state of the channel and the calcium density in its neigh-
borhood �6,23�. In any case IP3 is considered explicitly. Sev-
eral of these models are in the directed percolation univer-
sality class �6,19,20,23�. Based on these results some authors
agree that intracellular calcium waves could be an experi-
mental realization of the direct percolation �6,20,24�, al-
though there are examples contradicting this behavior �25�.
In addition to that, some of these simplified models allow the
study of calcium waves �6,18–21�.

In this paper we propose a stochastic reaction-diffusion
lattice model to study Ca2+ dynamics in the ER membrane.
Calcium channels and calcium ions are considered in two
interpenetrating sublattices which are connected via calcium
release and by diffusion. Calcium ions remain in the mem-
brane or spontaneously leave the membrane into the cytosol.
The state of channel is modulated by calcium ions: a channel
can be in one of three states, open, closed, or inactive, which
depends on the calcium ions bound to the activating and
inhibiting sites. In this way, we incorporated into the model,
in a simplified way, the dependence of the calcium channel
state on the density of calcium ions on its neighborhood. For
simplicity IP3 is not considered in our model.

The model is studied through mean field calculations and
numerical simulations. We show that the fraction of open
channels as a function of the density of calcium ions has a
bell shape reflecting the experimental result �26� that at very
low and very high calcium concentration all channels are
closed. The present model exhibits an absorbing state in
which all channels are closed and the lattice is depleted of
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calcium ions. The phase transition to the absorbing state oc-
curs when the rate of leaving the ER membrane into the
cytosol is sufficiently high. The critical behavior of the
model is in the directed percolation universality class
�24,27,28�.

II. MODEL

We consider a two-dimensional square lattice with two
interpenetrating sublattices A and B, as shown in Fig. 1,
which represent the ER membrane. Calcium channels are
located only on the sites of the sublattice B and calcium ions
occupy not only the sites of the sublattice A but also the sites
of the sublattice B. A site i of the sublattice A can either be
empty or occupied by at most one calcium ion. If we denote
by �i the number of calcium ions at site i, then �i=0 or �i
=1 according to whether the site i�A is vacant or has one
calcium ion, respectively. Let us define the variable � j as the
number of calcium ions on the binding sites of a channel at a
site j�B. A calcium channel has two binding sites for cal-
cium ions, corresponding to the activating and to the inhib-
iting sites, therefore the variable �i will take the values 0, 1,
or 2. Since IP3is not considered in our model, �i will also
describe the three possible states of a channel. The channel is
open only when a calcium ion is bound to the activating site
and there is no calcium bound to the inhibiting site � j =1.
The state � j =2 corresponds to the inhibited state, and the
state � j =0 refers to the closed state. Note that we consider a

sequential bind of calcium ions in the channel, as made be-
fore in other theoretical works �3,7�.

The dynamics of calcium ions on the membrane occurs in
three stages. In the first, ions are released from the ER
through calcium channels and remain in the membrane. In
our model this is represented by the process of catalytic cre-
ation of calcium ions on the sites of sublattice A. In the
second, they leave the membrane into the cytosol. This is
represented by a spontaneous annihilation of calcium ions
presented on the sites of sublattice A. The ER then acts as a
source and the cytosol as a sink of calcium ions. In the third
stage diffusion of calcium ions between sublattices A and B
is considered. Diffusion and calcium release connect the cal-
cium ions on sublattice A and the calcium at the channels on
sublattice B. Let us consider two independent parameters in
order to implement the dynamic rules: p, related to the dif-
fusion probability, and a, related to the annihilation process.
In this way, the diffusion, annihilation, and creation, are as-
sumed to occur with probabilities p, q= �1− p�a, and r= �1
− p��1−a�.

The three processes are described as follows. At each time
step one site i of the A sublattice is chosen at random.

�a� Spontaneous annihilation. If the site i is occupied then
it becomes empty with probability q. This process represents
a calcium ion leaving the ER membrane into the cytosol. It is
depicted as

�i → �i�

1 → 0,

where �i and �i� are the initial and final state, respectively.
�b� Diffusion. One of the four nearest neighbor of site i,

say site j of sublattice B, is chosen at random. A calcium ion
then hops from a site of one sublattice to a site of the other
sublattice with probability p. If we denote the initial and final
states of these two sites by �i ,� j, and �i� ,� j� then the pos-
sible processes are

�i � j → �i� � j�

0 1 → 1 0

1 0 → 0 1

0 2 → 1 1

1 1 → 0 2

For initial states 00 and 12, diffusion is not possible. Notice
that diffusion occurs between a site of one sublattice and a
site of the other sublattice.

�c� Catalytic creation. One of the four nearest neighbor of
site i, say site j of sublattice B, is chosen at random. If
calcium channel j is open �� j =1� then a calcium ion is cre-
ated at site i with probability r. This process represents a
calcium release from the ER and occurs only if the calcium
channel is open. It is depicted as

�i � j → �i� � j�

0 1 → 1 1.

Note that this process �that represents a release of calcium� is

FIG. 1. Two-dimensional lattice representing the ER membrane.
The channels are located at the sites of the sublattice B �squares�.
The calcium ions �full circles� can be either on the sites of the
sublattice A �open circles� or on the sites of the sublattice B. A site
of sublattice A can have at most one calcium ion whereas a site of
B can have at most two calcium ions. Periodic boundary conditions
are considered.
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not a diffusion since the creation of a calcium ion on sublat-
tice A does not change the channel state on sublattice B. The
channel is open when there is one calcium ion bound in the
activating site, and it depends on the diffusion between cal-
cium ions at the membrane �sublattice A� and on the channel
�sublattice B�. Therefore the state of the channel depends on
the calcium concentration on the neighborhood of the
channel.

III. MASTER EQUATION

The evolution of the probability P�� ,� , t� of a configura-
tion

��,�� = ��1,�2, . . . ,�N,�1,�2, . . . ,�N� �1�

at time t is governed by the master equation

d

dt
P��,�,t� = �

i�A

�wi
a��i�P��i,�,t� − wi

a���P��,�,t��

+ �
i�A

�
j�B

�wij
d ��i,� j�P��i,� j,t�

− wij
d ��,��P��,�,t�� + �

i�A
�
j�B

�wij
c ��i,��

�P��i,�,t� − wij
c ��,��P��,�,t�� , �2�

where wi
a�� ,��, wij

d �� ,��, and wij
c �� ,�� are the annihilation,

diffusion and creation transition rates, respectively. Accord-
ing to the rules defined above they are given by

wi
a = q�i, �3�

wij
d =

p

4
��i�1 − � j� +

1

2
� j�3 − � j�	 , �4�

wij
c =

r

4
�1 − �i�� j�2 − � j� . �5�

Note that wij
d and wij

c are zero if the site i of sublattice A and
the site j of sublattice B are not first nearest neighbors.
The notation �i stands for the configuration obtained
from � by changing �i to 1−�i and ��i ,� j� stands for
the configuration obtained from �� ,�� according to the
diffusion rule, as defined in item b of Sec. II. That is, if
�� ,��= ��1 , . . . ,�i , . . . ,�N ,�1 , . . . ,� j , . . . ,�N� then ��i ,� j�
= ��1 , . . . ,�i� , . . . ,�N ,�1 , . . . ,� j� , . . . ,�N� where �i ,� j and
�i� ,� j� are connected according to the rules in item b of
Sec. II.

Let us denote by PA��i� the probability that the site i
�A be in state �i and by PB��i� the probability that the site
j�B be in state � j. From the master equation it is straight-
forward to obtain the following time evolution for these
probabilities:

d

dt
PA�1� = rPAB�01� − qPA�1� + p�PAB�01�

+ PAB�02� − PAB�10� − PAB�11�� , �6�

d

dt
PB�1� = p�PAB�10� + PAB�02� − PAB�01� − PAB�11�� ,

�7�

d

dt
PB�2� = p�PAB�11� − PAB�02�� , �8�

where PAB��i ,� j� is the joint probability that sites i�A and
j�b be in states �i and � j, respectively.

We are interested in determining the stationary state. Par-
ticularly, we wish to determine the average number 
NB1� of
channels with one calcium �open channels�, the average
number 
NB2� of channels with two calcium ions �inhibited
channels�, and the average number 
NA1� of calcium ions on
sublattice A. From these quantities we may determine the
density of open channels �= 
NB1� /N, the density of calcium
ions on the lattice �= 
�NB1+2NB2+NA1�� /N and the flux of
calcium ions per site �=a
NA1� /N. These quantities are re-
lated to the densities x= PB�1�, y= PB�2�, and z= PA�1� by
�= �x+2y+z� /2, �=x /2, and �=az /2.

IV. MEAN FIELD APPROXIMATION

The simplest version of a truncation scheme consists in
writing the probability of a cluster of sites as the product of
the probability of each site so that PAB��i ,� j�
= PA��i�PB�� j�. Using this approximation and the notation
PA�1�=z, PB�1�=x, and PB�2�=y, we get the following ap-
proximate equations:

dz

dt
= r�1 − z�x − qz + p��1 − z��x + y� − z�1 − y�� , �9�

dx

dt
= p�z�1 − x − y� + �1 − z�y − x� , �10�

dy

dt
= p�zx − �1 − z�y� . �11�

This set of equations admits a trivial stationary solution
x=0, y=0, and z=0, and a nontrivial stationary solution,
given by

x =
a

2�1 − a�
�c − 1� , �12�

y =
a

4�1 − a�
�c − 1�2, �13�

z =
c − 1

c + 1
, �14�

where the auxiliary quantity c is given by

c =�4

a
− 7 �15�

occurring when a	ac=1/2. When a
ac, the only solution
is the trivial solution corresponding to the absorbing state.
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This state becomes unstable for a	ac making place to the
nontrivial solution corresponding to the active state. The
densities x, y, and z as a function of the parameter a is shown
in Fig. 2. Note that the stationary behavior of the model in
the mean field approximation �Eqs. �12�–�14�� does not de-
pend on the parameter p. Around the critical point a=ac they
behave as

x = 4�ac − a� , �16�

y = 16�ac − a�2, �17�

z = 4�ac − a� . �18�

In this approximation, the critical exponent � associated to x
and z equals 1. Note that the critical exponent associated
with y is twice the critical exponent associated with x and z.
The behavior of the densities when a→0 is given by

x = �a , �19�

y = 1 − �a , �20�

z = 1 − �a . �21�

V. SIMULATION

We performed numerical simulations on a square lattice
with N=40�40 sites with periodic boundary conditions.
Each run started with an initial random configuration of cal-
cium channels and calcium ions. The time evolution of the
system follows the rules defined in Sec. II. That is, at each
time step a site belonging to the A sublattice was chosen at
random. A random variable �1 uniformly distributed between
0 and 1 was generated. If �1	 p then an exchange of calcium
ions between the two sublattices is attempted. Otherwise,
another random variable �2 was generated. If �2	a, the an-

nihilation is performed. If �2a, a calcium ion is created.
At each Monte Carlo step, we determined the number NB1

of channels with one calcium �open channels�, the number
NB2 of channels with two calcium ions �inhibited channels�,
and the number NA1 of calcium ions on sublattice A. The
simulation results for the densities x= 
NB1� /N, y= 
NB2� /N,
and z= 
NA1� /N, as a function of the parameter a is shown in
Fig. 3 for the case of p=0.5.

At this value of p, the model shows a transition from the
active state to an absorbing state occurring at ac=0.458. The
critical parameter found in the mean field calculations �ac

=1/2� is greater, as expected. The simulations were per-
formed for various values of the diffusion probability. Since
the results do not change qualitatively as one varies p, we
have shown results only for p=0.5.

Around the critical point, we expect that the densities be-
have as

x  �ac − a��, �22�

y  �ac − a�2�, �23�

z  �ac − a��, �24�

where � is the exponent associated to the order parameter.
From the double-log plot of x and z versus the deviation

�ac−a� from the critical value, as shown in Fig. 4, we ob-
tained the value �=0.58 in agreement with �=0.583�4� �28�,
the expected value for two-dimensional models in the di-
rected percolation universality class. For the quantity y the
exponent obtained was 1.15 in accordance with 2�. We re-
mark that the mean-field calculations are in agreement with
this result, namely, that the critical exponent associated with
y is twice that associated with x and z.

The density x of open channels as a function of the den-
sity of calcium ions on sublattice A y can be seen in Fig. 5,
for p=0.5. We see that it has a bell shape reflecting the

FIG. 2. Mean-field results for the densities x, y, and z as a
function of the parameter a.

FIG. 3. Numerical simulation results for the densities x, y and z
as a function of the parameter a for the case p=0.5. The densities
vanish at the critical point ac=0.458.
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experimental result �26� that at small and large calcium con-
centrations the number of open channels is very small. A
relevant quantity related to the number of open channels is
the flux � of calcium ions through the ER membrane. In the
stationary state the flux can be determined by the number of
calcium ions leaving the ER membrane into the cytosol �or,
in other words, the number of calcium ions that are annihi-
lated� per unit time per site. This definition agrees with the
expression �=aPA�1� /2=az /2, given before. In Fig. 6 we
show the flux � of calcium ions versus the density of cal-
cium ions on sublattice A y, for p=0.5, and compare it with
the mean field result. We see that the flux of calcium also
decreases at small as well as at a large density of calcium.

VI. CONCLUSION

We have proposed a stochastic reaction-diffusion lattice
model to study Ca2+ dynamics in the ER membrane. Calcium
channels and calcium ions are placed in two interpenetrating
square lattices which are connected via calcium release and
by diffusion. Calcium ions are released from the ER through
the channels and remain in the membrane or spontaneously
leave the membrane into the cytosol. The state of the channel
depends on the calcium concentration on its neighborhood.
We have shown that the fraction of open channels as a func-
tion of the density of calcium ions has a bell shape �see Fig.
5� reflecting the experimental result that at very low and very
high calcium concentration all channels are closed �26�. The
present model exhibits an absorbing state in which all chan-
nels are closed and the lattice is depleted of calcium ions,
whose critical behavior is in the directed percolation univer-
sality class �24,27,28�.

Recently we have proposed a simplified stochastic model
to study calcium release �23�. In that model two interpen-
etrating lattices were considered, one just for calcium ions,
and other only for calcium channels. The density of calcium
ions varies for two reasons: they could leave the membrane
�spontaneous annihilation� or they could be released by the
calcium channels. Particularly, we looked on the dependence
of the critical behavior of the model as two functions �that
describes the dependence on channel opening or closing�
vary with the density of calcium ions on the neighborhood of
the channel. We found that small variations on these func-
tions strongly affected the critical behavior of the model.
Consequently, for some choices of that functions, the fraction
of open channels as a function of the density of calcium ions
does not present a bell shape. In contrast, in the present
model, where the dependence of the channel state on the
density of calcium ions on its neighborhood is intrinsic to the
model, the bell shape behavior is always observed. It is in-

FIG. 4. Double-log plot of Q versus the deviation ac−a of the
critical parameter, where the quantity Q can be z, x�a, or y. A linear
fitting gives a slope 0.58 for the first two quantities and 1.15 for the
third quantity.

FIG. 5. Simulation results for the fraction of open channels � as
a function of calcium density � for p=0.5 obtained for a lattice size
N=40�40. For comparison we also show mean field calculations.

FIG. 6. The flux � of calcium ions as a function of the density
� from simulations for p=0.5 obtained for a lattice size N=40
�40. For comparison we also show mean field calculations.

CALCIUM DYNAMICS ON A STOCHASTIC REACTION-… PHYSICAL REVIEW E 74, 061905 �2006�

061905-5



teresting to note that both models are in the directed perco-
lation universality class.

The behavior of the model is well described by mean field
calculations. The simulation results do not change qualita-
tively as one varies the parameter p. This weak dependence
on the diffusion is reflected on the mean-field calculations
which show no dependence on that parameter �Eqs.
�12�–�14�. Both in mean field calculations as well as in simu-

lations we found that the critical exponent associated with y
is twice that associated with x and z.
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